
Quick Start to Using TypeScript and TypeORM
on Node.js for CLI and Web
TypeScript and TypeORM are two of the most popular tools for building
robust Node.js applications. TypeScript is a superset of JavaScript that
adds static typing, while TypeORM is an object-relational mapper (ORM)
that makes it easy to work with databases.

Quick Start to using Typescript and TypeORM on
Node.js for CLI and web applications by David Herron

5 out of 5
Language : English
File size : 3258 KB
Text-to-Speech : Enabled
Screen Reader : Supported
Enhanced typesetting : Enabled
Print length : 444 pages
Lending : Enabled

In this comprehensive guide, we'll show you how to use TypeScript and
TypeORM to build both CLI and web-based Node.js applications. We'll
cover everything from setup and configuration to advanced topics like
dependency injection and testing.

Prerequisites

To follow along with this guide, you'll need the following:

Node.js installed on your system

FREE

https://synopsis.aroadtome.com/read-book.html?ebook-file=eyJjdCI6ImUrSFwvRVwvM3FRd3RyOHdHV1N0Y0g0QXRqQjhrbURNa01tTnFMb0ttYWdaaDFtRW8xR2Z6enFVUHI2UGNmeU5jd2hDcFpid0xJXC9LZHVTbEg2UTZydm9jajc5QWNMSjJCVW1SZWZScW8xRlE0QnBRS3VZbU1QNkVtSDBWdEQ2QkE5MVwvMjFncGJRRGxlc2ZsM3d3aXIwXC9wMWFkM0lNSXNRaHRJSEFCQnV0ZUdFays3RnprMWQ3c2FuellaRlpxSEU4TFE5NE5yeklkZDA1NHBzZUdcLzJJZEFVXC9oZmg5WENcL1ZZVTBHQ1VMblwvZkE9IiwiaXYiOiI5OWFmMjQ0YjQ3YjBmZmNkMTkxODY1MzY2Y2E5OWQ5NCIsInMiOiI5NzAzMGM0OThhYWMwODVmIn0%3D
https://synopsis.aroadtome.com/read-book.html?ebook-file=eyJjdCI6IkZFQk1SbTMzeHo3aW9XR25mMnVYdW5oRDRBOVJsYUp5V1Z1b2VheTdKUHloWGlaVmxUQkdVZTV4a2dWZUEyMndTR3pMTHhCbnRDUktNanJxSTh3enBcLytJVWY2VFBNXC9xVmxhaVRPRkhcL21FWWZcL1NxMjhVYXNuck1BMWZ5bFRNZzlqcm80V2JITG9wc0xaY3FVZlQxV01lM1NKT2pNWlBKRTVHcXRWcitReTlXRkR2SmRkRzVYaWFNeXF4OGJSVHZhXC9KV3dkRXgzTWZWXC9PNm01Zkc0MGl4bUVuKzJlK2s4NURLTlZ0aU9OUUE9IiwiaXYiOiI2NzAxM2RlZGNiOTllZmU3OGUyMmViZGQyYmE1OTVjZSIsInMiOiJhZmViOGYyYjEyNGRjYWE0In0%3D
https://synopsis.aroadtome.com/read-book.html?ebook-file=eyJjdCI6ImdBc21DYWpFbGNHdVwvQ2ZWTGhBNEQxcGZ2T0VjQzVuZ3FTR1YwaEg1NTBFXC96R2EyNDNcL3MzQ1krSklXNklMNndGaVZpblZvSDlDaFg4czR6OTR1UnZDYVNlTG9LYm1yRUZ3UmNrMzVKc1d6UHVFQmJBcFJZa1hLdjZjRlFxbE1aWTFQVXl1NTUrUnpVcXM3ZHZ3aGZSRmZ3bjZRcGVsdk94MnhGVENPeklieWg3VytPaW9nYUtaVHhYOXBLdWJhYjVXYVRPT0lmR1R1M2lLR3pPWlJVYlwvS3JxVDh3T2o0XC9uanVRMHJ1ekRaUT0iLCJpdiI6IjgxODZkODRlMDAxZWZmNWY0YjhjOGQ1N2NmMjcxZTcyIiwicyI6IjUzY2I2ZDYxYmJlZmE3Y2QifQ%3D%3D


A code editor or IDE, such as Visual Studio Code

A basic understanding of JavaScript

Getting Started

Let's start by creating a new Node.js project. Open your terminal and run
the following command:

mkdir my-project cd my-project npm init -y

This will create a new directory called "my-project" and initialize a new npm
project.

Next, we need to install TypeScript and TypeORM. Run the following
command:

npm install --save-dev typescript typeorm

This will install TypeScript and TypeORM as development dependencies.

Now, we need to configure TypeScript. Create a file called "tsconfig.json" in
the root of your project directory. Add the following contents to the file:

{ "compilerOptions": { "target": "es5", "module": "commonjs", "outDir":
"./dist", "sourceMap": true, "strict": true, "noImplicitAny": true, }}

This configuration tells TypeScript to compile our code to ES5, use the
CommonJS module system, and output the compiled code to the "dist"
directory. We've also enabled source maps, strict mode, and implicit any
type checking.



Finally, we need to configure TypeORM. Create a file called
"ormconfig.json" in the root of your project directory. Add the following
contents to the file:

{ "type": "mysql", "host": "localhost", "port": 3306, "username": "root",
"password": "", "database": "my_database", }

This configuration tells TypeORM to use MySQL as our database, and
specifies the host, port, username, password, and database name.

Building a CLI Application

Now that we have TypeScript and TypeORM configured, let's build a simple
CLI application. Create a file called "index.ts" in the root of your project
directory. Add the following contents to the file:

import {createConnection}from "typeorm"; import {User}from "./entity/User";

createConnection().then(async connection => { const user = new User();
user.firstName ="John"; user.lastName ="Doe"; await
connection.manager.save(user); console.log("User created successfully!");
});

This script imports the "createConnection" function from TypeORM, and the
"User" class from a file called "entity/User.ts". We'll create that file in a
moment.

The "createConnection" function establishes a connection to our database.
Once the connection is established, we create a new "User" instance and
set its first name and last name. We then use the "save" method to save
the user to the database.



To create the "entity/User.ts" file, run the following command:

touch entity/User.ts

Add the following contents to the file:

import {Entity, PrimaryGeneratedColumn, Column}from "typeorm";

@Entity() export class User {

@PrimaryGeneratedColumn() id: number;

@Column() firstName: string;

@Column() lastName: string;

}

This script defines the "User" entity. The "@Entity()" decorator tells
TypeORM that this class represents a database table. The
"@PrimaryGeneratedColumn()" decorator tells TypeORM that the "id"
property is the primary key of the table, and that it should be auto-
generated. The "@Column()" decorator tells TypeORM that the "firstName"
and "lastName" properties are columns in the table.

Now, we can run our CLI application. Open your terminal and run the
following command:

tsc && node dist/index.js



This will compile our TypeScript code and then run the compiled JavaScript
code. You should see the following output:

User created successfully!

This means that our CLI application has successfully created a new user in
our database.

Building a Web Application

Now that we've seen how to use TypeScript and TypeORM to build a CLI
application, let's see how to use them to build a web application.

Create a new directory called "web" in the root of your project directory.
This directory will contain the code for our web application.

In the "web" directory, create a file called "server.ts". Add the following
contents to the file:

import express from "express"; import {createConnection}from "typeorm";
import {User}from "../entity/User";

const app = express(); app.use(express.json());

createConnection().then(async connection => { app.get("/users", async
(req, res) => { const users = await connection.manager.find(User);
res.json(users); });

app.post("/users", async (req, res) => { const user = new User();
user.firstName = req.body.firstName; user.lastName = req.body.lastName;
await connection.manager.save(user); res.json(user); });



app.listen(3000, () => { console.log("Server is listening on port 3000"); }); });

This script imports the "express" module, the "createConnection" function
from TypeORM, and the "User" class from the "../entity/User.ts" file.

The "createConnection" function establishes a connection to our database.
Once the connection is established, we define two routes: a GET route for
fetching all users, and a POST route for creating a new user.

To start our web application, open your terminal and run the following
command:

tsc --watch

This will watch for changes to our TypeScript code and compile it
automatically.

In another terminal window, run the following command:

cd web node server.js

This will start our web application. Open your browser and go to
http://localhost:3000. You should see a list of all users in your database.

Click the "Create User" button to create a new user. Enter a first name and
last name, and then click the "Create" button. You should see the new user
appear in the list.

Advanced Topics



In this section, we'll cover some advanced topics related to using
TypeScript and TypeORM.

Dependency Injection

Dependency injection is a design pattern that allows us to decouple our
code from конкретные реализации. This makes our code more flexible
and easier to test.

TypeORM supports dependency injection through its "injectable" decorator.
To use dependency injection, we can add the "@Injectable()" decorator to
our constructor functions. For example, the following script shows how we
can inject the "connection" object into our "UserRepository":

import {Injectable}from "typeorm"; import {Connection}from "typeorm";

@Injectable() export class UserRepository {

private connection: Connection;

constructor(connection: Connection){this.connection = connection; }

// ...

}

We can then inject the "UserRepository" into our other classes, such as our
controllers:

import {Injectable}from "typeorm"; import {UserRepository}from
"./UserRepository";



@Injectable() export class UserController {

private userRepository: UserRepository;

constructor(userRepository: UserRepository){this.userRepository =
userRepository

Quick Start to using Typescript and TypeORM on
Node.js for CLI and web applications by David Herron

5 out of 5
Language : English
File size : 3258 KB
Text-to-Speech : Enabled
Screen Reader : Supported
Enhanced typesetting : Enabled
Print length : 444 pages
Lending : Enabled

Unveiling the Enchanting World of Customs
and Crafts: Recipes and Rituals for Festivals of
Light
Embark on a captivating journey through the vibrant tapestry of customs
and crafts entwined with the enchanting Festivals of Light: Hanukkah,
Yule, and Diwali. This...

FREE

https://synopsis.aroadtome.com/read-book.html?ebook-file=eyJjdCI6ImUrSFwvRVwvM3FRd3RyOHdHV1N0Y0g0QXRqQjhrbURNa01tTnFMb0ttYWdaaDFtRW8xR2Z6enFVUHI2UGNmeU5jd2hDcFpid0xJXC9LZHVTbEg2UTZydm9jajc5QWNMSjJCVW1SZWZScW8xRlE0QnBRS3VZbU1QNkVtSDBWdEQ2QkE5MVwvMjFncGJRRGxlc2ZsM3d3aXIwXC9wMWFkM0lNSXNRaHRJSEFCQnV0ZUdFays3RnprMWQ3c2FuellaRlpxSEU4TFE5NE5yeklkZDA1NHBzZUdcLzJJZEFVXC9oZmg5WENcL1ZZVTBHQ1VMblwvZkE9IiwiaXYiOiI5OWFmMjQ0YjQ3YjBmZmNkMTkxODY1MzY2Y2E5OWQ5NCIsInMiOiI5NzAzMGM0OThhYWMwODVmIn0%3D
https://synopsis.aroadtome.com/read-book.html?ebook-file=eyJjdCI6IkZFQk1SbTMzeHo3aW9XR25mMnVYdW5oRDRBOVJsYUp5V1Z1b2VheTdKUHloWGlaVmxUQkdVZTV4a2dWZUEyMndTR3pMTHhCbnRDUktNanJxSTh3enBcLytJVWY2VFBNXC9xVmxhaVRPRkhcL21FWWZcL1NxMjhVYXNuck1BMWZ5bFRNZzlqcm80V2JITG9wc0xaY3FVZlQxV01lM1NKT2pNWlBKRTVHcXRWcitReTlXRkR2SmRkRzVYaWFNeXF4OGJSVHZhXC9KV3dkRXgzTWZWXC9PNm01Zkc0MGl4bUVuKzJlK2s4NURLTlZ0aU9OUUE9IiwiaXYiOiI2NzAxM2RlZGNiOTllZmU3OGUyMmViZGQyYmE1OTVjZSIsInMiOiJhZmViOGYyYjEyNGRjYWE0In0%3D
https://synopsis.aroadtome.com/full/e-book/file/Unveiling%20the%20Enchanting%20World%20of%20Customs%20and%20Crafts%20Recipes%20and%20Rituals%20for%20Festivals%20of%20Light.pdf
https://synopsis.aroadtome.com/full/e-book/file/Unveiling%20the%20Enchanting%20World%20of%20Customs%20and%20Crafts%20Recipes%20and%20Rituals%20for%20Festivals%20of%20Light.pdf
https://synopsis.aroadtome.com/read-book.html?ebook-file=eyJjdCI6ImdBc21DYWpFbGNHdVwvQ2ZWTGhBNEQxcGZ2T0VjQzVuZ3FTR1YwaEg1NTBFXC96R2EyNDNcL3MzQ1krSklXNklMNndGaVZpblZvSDlDaFg4czR6OTR1UnZDYVNlTG9LYm1yRUZ3UmNrMzVKc1d6UHVFQmJBcFJZa1hLdjZjRlFxbE1aWTFQVXl1NTUrUnpVcXM3ZHZ3aGZSRmZ3bjZRcGVsdk94MnhGVENPeklieWg3VytPaW9nYUtaVHhYOXBLdWJhYjVXYVRPT0lmR1R1M2lLR3pPWlJVYlwvS3JxVDh3T2o0XC9uanVRMHJ1ekRaUT0iLCJpdiI6IjgxODZkODRlMDAxZWZmNWY0YjhjOGQ1N2NmMjcxZTcyIiwicyI6IjUzY2I2ZDYxYmJlZmE3Y2QifQ%3D%3D


How to Write a Nonfiction Memoir: The
Bookcraft Guide
Have you ever wanted to share your story with the world? A nonfiction
memoir is a powerful way to do just that. But writing a memoir can be a
daunting...

https://synopsis.aroadtome.com/full/e-book/file/How%20to%20Write%20a%20Nonfiction%20Memoir%20The%20Bookcraft%20Guide.pdf
https://synopsis.aroadtome.com/full/e-book/file/How%20to%20Write%20a%20Nonfiction%20Memoir%20The%20Bookcraft%20Guide.pdf

